Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
preprints.org; 2024.
Preprint Dans Anglais | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202311.1727.v3

Résumé

The novel coronavirus disease (COVID-19) pandemic has resulted in over 720 million confirmed cases and 7 million deaths worldwide, with insufficient treatment options. Innumerable efforts are being made around the world for faster identification of therapeutic agents to treat the deadly disease. Postacute sequelae of SARS-CoV-2 infection or COVID-19 (PASC), also called Long COVID, is still being understood and lacks treatment options as well. A growing list of drugs are being suggested by various in silico, in vitro and ex vivo models, however currently only two treatment options are widely used: the RNA-dependent RNA polymerase (RdRp) inhibitor remdesivir, and the main protease inhibitor nirmatrelvir in combination with ritonavir. Computational drug development tools and in silicostudies involving molecular docking, molecular dynamics, entropy calculations and pharmacokinetics can be useful to identify new targets to treat COVID-19 and PASC, as shown in this work and our recent paper that identified alendronate as a promising candidate. We have now investigated all bisphosphonates which can bind competitively to nidovirus RdRp-associated nucleotidyl (NiRAN) transferase domain, and systematically down selected seven candidates (CHEMBL608526, CHEMBL196676, CHEMBL164344, CHEMBL4291724, CHEMBL4569308, CHEMBL387132, CHEMBL98211), two of whichclosely resemble the approved drugs minodronate and zoledronate. This work and our recent paper together provide an in silico mechanistic explanation for alendronate and zoledronate users having dramatically reduced odds of SARS-CoV-2 testing, COVID-19 diagnosis, and COVID-19-related hospitalizations, and indicate that similar observational studies with minodronate could be valuable.


Sujets)
Infections à coronavirus , Syndrome respiratoire aigu sévère , COVID-19 , Maladie
2.
preprints.org; 2022.
Preprint Dans Anglais | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202210.0320.v1

Résumé

The global threat of COVID-19 has led to the increasing use of metabolomics to study SARS-CoV-2 infection in humans and animals. Despite this, understanding SARS-CoV-2's metabolome during infection remains difficult and incomplete. Here, metabolic responses were characterized from sampled nasal washes collected from an asymptomatic ferret model (n = 20) at different time points before and after the SARS-CoV-2 challenge using an LC-MS-based metabolomics approach. Multivariate analysis of the nasal wash metabolome data resulted in several statistically significant features being observed. Despite no effects of gender or interaction between gender and time on the time course of SARS-CoV-2 infection, 16 metabolites were significantly different at every time point post-infection. Among these altered metabolites, the relative abundance of taurine was elevated post infection which could be an indication of hepatotoxicity, while the accumulation of sialic acids could indicate SARS-CoV-2 invasion. The pathway analysis identified several pathways influenced by SARS-CoV-2 infection. Of these, sugar, glycan, and amino acid metabolisms were the key altered pathways in the upper respiratory channel during infection. These findings provide some new insights into the progression of SARS-CoV-2 infection in ferrets at the metabolic level which could be useful for the development of early clinical diagnosis tools and new or repurposed drug therapies.


Sujets)
COVID-19
3.
preprints.org; 2022.
Preprint Dans Anglais | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202209.0323.v1

Résumé

Although various vaccines are now commercially available, they have not been able to stop the spread of COVID-19 infection completely. An excellent strategy to quickly get safe, effective, and affordable COVID-19 treatment is to repurpose drugs that are already approved for other diseases as adjuvants along with the ongoing vaccine regime. The process of developing an accurate and standardized drug repurposing dataset requires a considerable level of resources and expertise due to the commercial availability of an extensive array of drugs that could be potentially used to address the SARS-CoV-2 infection. To address this bottleneck, we created the CoviRx platform. CoviRx is a user-friendly interface that provides access to the data, which is manually curated for COVID-19 drug repurposing data. Through CoviRx, the data curated has been made open-source to help advance drug repurposing research. CoviRx also encourages users to submit their findings after thoroughly validating the data, followed by merging it by enforcing uniformity and integ-rity-preserving constraints. This article discusses the various features of CoviRx and its design principles. CoviRx has been designed so that its functionality is independent of the data it dis-plays. Thus, in the future, this platform can be extended to include any other disease X beyond COVID-19. CoviRx can be accessed at www.covirx.org.


Sujets)
COVID-19
4.
preprints.org; 2022.
Preprint Dans Anglais | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202209.0310.v1

Résumé

SARS-CoV-2, is the cause of the COVID-19 pandemic which has claimed more than six million lives worldwide, devastating the economy and overwhelming healthcare systems globally. The development of new drug molecules and vaccines has played a critical role in managing the pandemic; however, new variants of concern still pose a significant threat as the current vaccines cannot prevent all infections. This situation calls for the collaboration of biomedical scientists and healthcare workers across the world. Repurposing approved drugs is an effective way of fast-tracking new treatments for recently emerged diseases. To this end, we have assembled and curated a database consisting of 7817 compounds from the Compounds Australia Open Drug collection. We developed a set of eight filters based on indicators of efficacy and safety that were applied sequentially to down-select drugs that showed promise for drug repurposing efforts against SARS-CoV-2. Considerable effort was made to evaluate approximately 14000 assay data points for SARS-CoV-2 FDA/TGA-approved drugs and provide an average activity score for 3539 compounds. The filtering process identified 12 FDA approved molecules with established safety profiles that have a plausible mechanism for treating COVID-19 disease. The methodology developed in our study provides a template for prioritising repurposable drug candidates that are safe, efficacious, and cost-effective for the treatment of COVID-19, long COVID, or any other future disease. We present our database in an easy-to-use interactive interface (CoviRx, https://www.covirx.org/) that was also developed to enable scientific community to access to the data of over 7000 potential drugs and to implement alternative prioritisation and down-selection strategies.


Sujets)
COVID-19
5.
preprints.org; 2022.
Preprint Dans Anglais | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202209.0288.v1

Résumé

The repurposing of licenced drugs for use against COVID-19 is one of the most rapid ways to develop new and alternative therapeutic options to manage the ongoing pandemic. Given the approximately 8,000 licenced compounds available from Compounds Australia that can be screened, this paper demonstrates the utility of commercially-available ex vivo/3D airway and alveolar tissue models. These models are a closer representation of in vivo studies compared to in vitro models, but retain the benefits of rapid in vitro screening for drug efficacy. We demonstrate that several existing drugs appear to show anti-SARS-CoV-2 activity against both Delta and Omicron Variants of Concern in the airway model. In particular, fluvoxamine, as well as aprepitant, everolimus, and sirolimus have virus reduction efficacy comparable to the current standard of care (remdesivir, molnupiravir, nirmatrelvir). Whilst these results are encouraging, further testing and efficacy studies are required before clinical use can be considered.


Sujets)
COVID-19
6.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.03.03.481940

Résumé

As the existing vaccines do not completely prevent infections or community transmission of the coronavirus disease-19 (COVID-19), there is an unmet need for vaccines that can better combat severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOC) and also eliminate cold chain requirements. We show that highly thermo-tolerant monomeric and trimeric receptor binding domain derivatives that can withstand 100C for 90 minutes and 37C for four weeks elicit high antibody titres in mice that received prime-boost immunization on Days 0 and 21; and that these antibodies neutralize SARS-CoV-2 variants VIC31 (containing the Spike D614G mutation), Delta and Omicron (BA.1.1) VOC. Compared to VIC31, there was an average 14.4-fold reduction in neutralization against BA.1.1 for the three monomeric, and 16.5-fold re-duction for the three trimeric antigen-adjuvant combinations; the corresponding values against Delta were 2.5 and 3.0. Our findings suggest that monomeric formulations are suitable for the upcoming Phase I human clinical trials, and that there is potential for improving efficacy with vaccine matching to improve responses against emerging variants. These findings are consistent with in silico modelling and AlphaFold predictions which show that while oligomeric presentation can be generally beneficial, it can make important epitopes inaccessible.


Sujets)
COVID-19 , Infections à coronavirus
7.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.02.20.22271237

Résumé

Plasma samples taken at different time points from donors who received either AstraZeneca (Vaxzevria) or Pfizer (Comirnaty) or Moderna (Spikevax) coronavirus disease-19 (COVID-19) vaccine were assessed in virus neutralization assays against Delta and Omicron variants of concern and a reference isolate (VIC31). With the Pfizer vaccine there was 6-8 fold reduction in 50% neutralizing antibody titres (NT50) against Delta and VIC31 at 6 months compared to 2 weeks after the second dose; followed by 25-fold increase at 2 weeks after the third dose. Neutralisation of Omicron was only consistently observed 2 weeks after the third dose, with most samples having titres below the limit of detection at earlier timepoints. Moderna results were similar to Pfizer at 2 weeks after the second dose, while the titres for AstraZeneca samples derived from older donors were 7-fold lower against VIC31 and below the limit of detection against Delta and Omicron. Age and gender were not found to significantly impact our results. These observations indicate that vaccine matching may be needed, and that at least a third dose of these vaccines is necessary to generate sufficient neutralising antibodies against emerging variants of concern, especially Omicron, amidst the challenges of ensuring vaccine equity worldwide.


Sujets)
COVID-19
8.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.25.21268404

Résumé

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced five variants of concern (VOC) to date. The important Spike mutation N501Y is common to Alpha, Beta, Gamma and Omicron VOC, while the P681R is key to the spread of Delta. We have analysed circa 4.2 million SARS-CoV-2 genome sequences from the largest repository Global Initiative on Sharing All Influenza Data (GISAID) and demonstrated that these two mutations have cooccurred on the Spike D614G mutation background at least 3,678 times from 17 October 2020 to 1 November 2021. In contrast, the Y501-H681 combination, which is common to Alpha and Omicron VOC, is present in circa 1.1 million entries. Two-thirds of the 3,678 cooccurrences were in France, Turkey or US (East Coast), and the rest across 57 other countries. 55.5% and 4.6% of the cooccurrences were Alpha Q.4 and Gamma P.1.8 sub-lineages acquiring the P681R; 10.7% and 3.8% were Delta B.1.617.2 lineage and AY.33 sub-lineage acquiring the N501Y; the remaining 10.2% were in other variants. Despite the selective advantages individually conferred by N501Y and P681R, the Y501-R681 combination counterintuitively did not outcompete other variants in every instance we have examined. While this is a relief to worldwide public health efforts, in vitro and in vivo studies are urgently required in the absence of a strong in silico explanation for this phenomenon. This study demonstrates a pipeline to analyse combinations of key mutations from public domain information in a systematic manner and provide early warnings of spread.


Sujets)
Infections à coronavirus , Syndrome respiratoire aigu sévère
9.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.08.04.455042

Résumé

In silico predictions combined with in vitro, in vivo and in situ observations collectively suggest that mouse adaptation of the SARS-CoV-2 virus requires an aromatic substitution in position 501 or position 498 (but not both) of the spike proteins receptor binding domain. This effect could be enhanced by mutations in positions 417, 484 and 493 (especially K417N, E484K, Q493K and Q493R), and to a lesser extent by mutations in positions 486 and 499 (such as F486L and P499T). Such enhancements due to more favourable binding interactions with residues on the complementary angiotensin-converting enzyme 2 (ACE2) interface, are however, unlikely to sustain mouse infectivity on their own based on theoretical and experimental evidence to date. Our current understanding thus points to the Alpha, Beta and Gamma variants of concern infecting mice, while Delta and Delta Plus lack a similar biomolecular basis to do so. This paper identifies a list of countries where local field surveillance of mice is encouraged because they may have come in contact with humans who had the virus with adaptive mutation(s). It also provides a systematic methodology to analyze the potential for other animal reservoirs and their likely locations.


Sujets)
Infections à coronavirus
10.
preprints.org; 2021.
Preprint Dans Anglais | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-202103.0765.v2

Résumé

COVID-19 is a contagious respiratory disease that is causing significant global morbidity and mortality. Understanding the impact of a SARS-CoV-2 infection on the host metabolism is still in its infancy but of great importance. Herein, we investigated the metabolic response during viral shedding and post-shedding in an asymptomatic SARS-CoV-2 ferret model (n=6) challenged with two SARS-CoV-2 isolates. Virological and metabolic analyses were performed on (minimally invasive) collected oral swabs, rectal swabs, and nasal washes. Fragments of SARS-CoV-2 RNA were only found in the nasal wash samples in four of the six ferrets, and in the samples collected 3 to 9 days post-infection (referred to as viral shedding). Central carbon metabolism metabolites were analyzed during viral shedding and post-shedding periods using a dynamic MRM (dMRM) database and method. Subsequent untargeted metabolomics and lipidomics of the same samples were performed using an LC-QToF-MS methodology, building upon the identified differentiated central carbon metabolism metabolites. Multivariate analysis of the acquired data identified 29 significant metabolites and three lipids that were subjected to pathway enrichment and impact analysis. The presence of viral shedding coincided with the challenge dose administered and significant changes in the citric acid cycle, purine metabolism, and pentose phosphate pathways, amongst others, in the host nasal wash samples. An elevated immune response in the host was also observed between the two isolates studied. These results support other reported metabolomic-based findings found in clinical observational studies and indicate the utility of metabolomics applied to ferrets for further COVID-19 research that advances early diagnosis of asymptomatic and mild clinical COVID-19 infections, in addition to assessing the effectiveness of new or re-purposed drug therapies.


Sujets)
COVID-19
11.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.04.17.440246

Résumé

The ongoing COVID-19 pandemic has resulted in significant global morbidity and mortality on a scale similar to the influenza pandemic of 1918. Over the course of the last few months, a number of SARS-CoV-2 variants have been identified against which vaccine-induced immune responses may be less effective. These variants-of-concern have garnered significant attention in the media, with discussion around their impact on the future of the pandemic and the ability of leading COVID-19 vaccines to protect against them effectively. To address concerns about emerging SARS-CoV-2 variants affecting vaccine-induced immunity, we investigated the neutralisation of representative G614, 501Y.V1 and 501Y.V2 virus isolates using sera from ferrets that had received prime-boost doses of the DNA vaccine, INO-4800. Neutralisation titres against G614 and 501Y.V1 were comparable, but titres against the 501Y.V2 variant were approximately 4-fold lower, similar to results reported with other nucleic acid vaccines and supported by in silico biomolecular modelling. The results confirm that the vaccine-induced neutralising antibodies generated by INO-4800 remain effective against current variants-of-concern, albeit with lower neutralisation titres against 501Y.V2 similar to other leading nucleic acid-based vaccines.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche